首页> 外文OA文献 >Heterogeneous Networked Data Recovery from Compressive Measurements Using a Copula Prior
【2h】

Heterogeneous Networked Data Recovery from Compressive Measurements Using a Copula Prior

机译:压缩测量的异构网络数据恢复   使用Copula prior

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large-scale data collection by means of wireless sensor network andinternet-of-things technology poses various challenges in view of thelimitations in transmission, computation, and energy resources of theassociated wireless devices. Compressive data gathering based on compressedsensing has been proven a well-suited solution to the problem. Existing designsexploit the spatiotemporal correlations among data collected by a specificsensing modality. However, many applications, such as environmental monitoring,involve collecting heterogeneous data that are intrinsically correlated. Inthis study, we propose to leverage the correlation from multiple heterogeneoussignals when recovering the data from compressive measurements. To this end, wepropose a novel recovery algorithm---built upon belief-propagationprinciples---that leverages correlated information from multiple heterogeneoussignals. To efficiently capture the statistical dependencies among diversesensor data, the proposed algorithm uses the statistical model of copulafunctions. Experiments with heterogeneous air-pollution sensor measurementsshow that the proposed design provides significant performance improvementsagainst state-of-the-art compressive data gathering and recovery schemes thatuse classical compressed sensing, compressed sensing with side information, anddistributed compressed sensing.
机译:鉴于相关无线设备的传输,计算和能量资源的局限性,借助于无线传感器网络和物联网技术的大规模数据收集提出了各种挑战。基于压缩感测的压缩数据收集已被证明是解决该问题的理想解决方案。现有设计利用特定传感方式收集的数据之间的时空相关性。但是,许多应用程序(例如环境监视)都涉及收集本质上相关的异构数据。在这项研究中,我们建议从压缩测量中恢复数据时,利用多个异质信号的相关性。为此,我们提出了一种新的恢复算法-建立在信念传播原则的基础上-利用来自多个异构信号的相关信息。为了有效地捕获各种传感器数据之间的统计依赖性,所提出的算法使用了copulafunctions统计模型。异类空气污染传感器测量的实验表明,与经典的压缩感测,带有边信息的压缩感测和分布式压缩感测的最新压缩数据采集和恢复方案相比,该提议的设计提供了显着的性能改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号